Để tìm đường tiệm cận của hàm số y = f(x) ta dựa vào tập xác định D để biết số giới hạn phải tìm. Nếu tập xác định D có đầu mút là khoảng thì phải tìm giới hạn của hàm số khi x tiến đến đầu mút đó.
Ví dụ: D = [a ; b) thì phải tính thì ta phải tìm ba giới hạn là
– Để tìm đường tiệm cận ngang ta phải có giới hạn của hàm số ở vô tận:
thì (Δ) : y = y0 là tiệm cận ngang của (C) : y = f(x).
– Để tìm đường tiệm cận đứng thì hàm số phải ra vô tận khi x tiến đến một giá trị x0 :
Nếu thì (Δ) : x = x0 là đường tiệm cận đứng của (C) : y = f(x).
– Để tìm đường tiệm cận xiên của (C) : y = f(x), trước hết ta phải có điều kiện
. Sau đó để tìm phương trình đường tiệm cận xiên ta có hai cách :
+ Phân tích biểu thức y = f(x) thành dạng y = f(x) = ax + b + ε(x) thì (Δ) : y = ax + b
(a ≠ 0) là đường tiệm cận xiên của (C) : y = f(x)
+ Hoặc ta tìm a và b bởi công thức:
Khi đó y = ax + b là phương trình đường tiệm cận xiên của (C) : y = f(x).
Ghi chú :
Đường tiệm cận của một số hàm số thông dụng :
– Hàm số có hai đường tiệm cận đứng và ngang lần lượt có phương trình
là
– Với hàm số (không chia hết và a.p ≠ 0), ta chia đa thức để có:
thì hàm số có hai đường tiệm cận đứng và xiên lần lượt có phương trình là:
– Hàm hữu tỉ (không chia hết) có đường tiệm cận xiên khi bậc của tử lớn hơn bậc của mẫu một bậc.
– Với hàm hữu tỉ, giá trị x0 làm mẫu triệt tiêu nhưng không làm tử triệt tiêu thì x = x0 chính là phương trình đường tiệm cận đứng.
– Hàm số có thể viết ở dạng
hàm số sẽ có hai đường tiệm cận xiên:
Ví dụ: Đồ thị hàm số có các đường tiệm cận với phương trình là kết quả nào
sau đây?
(A) x = 3, y = 1 ; (B) x= 3, x = -3, y = 1 ;
(C)x = -3, y = 1 ; (D) x = 3, y = 2x – 4.
Giải
là phương trình đường tiệm cận ngang.
(nên x = 3 không là tiệm cận đứng).
là phương trình đường tiệm cận đứng
Chon đáp án C.